已知等差数列{a n }为递增数列,且a 2 ,a 5 是方程x 2 -12x+27=0的两根,数列{b n }的前n项和T n =1-

2025-05-12 20:05:17
推荐回答(1个)
回答(1):

(1)①∵等差数列{a n }为递增数列,且a 2 ,a 5 是方程x 2 -12x+27=0的两根,
∴a 2 +a 5 =12,a 2 a 5 =27,
∵d>0,∴a 2 =3,a 5 =9,
∴d=
a 5 - a 2
3
=2,a 1 =1,
∴a n =2n-1(n∈N *
②∵T n =1-
1
2
b n
∴令n=1,得b 1 =
2
3

当n≥2时,T n =1-
1
2
b n ,T n-1 =1-
1
2
b n-1 ,两式相减得,b n =
1
2
b n-1 -
1
2
b n
b n
b n-1
=
1
3
(n≥2),
数列{b n }是以
2
3
为首项,
1
3
为公比的等比数列.
∴bn=
2
3
?
(
1
3
) n-1
= 2?
1
3 n
(n∈N * ).
(2)∵bn= 2?
1
3 n
,C n =
3 n b n
a n a n+1

∴C n =
3 n ×2×
1
3 n
(2n-1)(2n+1)
=
1
2n-1
-
1
2n+1

∴S n = (1-
1
3
)+(
1
3
-
1
5
)+
…+ (
1
2n-1
-
1
2n+1
)
= 1-
1
2n+1
=
2n
2n+1