(1)∵2Sn=2an2+an-1,∴2Sn+1=2an+12+an+1-1,
两式相减得:2an+1=2(an+1-an)(an+1+an)+(an+1-an),
即(an+1+an)(2an+1-2an-1)=0.
∵an>0,∴2an+1-2an-1=0,∴an+1-an=
.1 2
∴数列{an}是以1为首项,
为公差的等差数列,1 2
∴an=
.n+1 2
(2)∵bn=
=an 2n
,n+1 2n+1
∴Tn=
+2 22
+3 23
+…+4 24
,①n+1 2n+1
Tn=1 2
+2 23
+3 24
+…+4 25
,②n+1 2n+2
①-②得
Tn=1 2
+1 2
+1 23
+…+1 24
-1 2n+1
n+1 2n+2
=
+1 2
?
(1?1 8
)1 2n?1 1?
1 2
n+1 2n+2
=
-3 4
-1 2n+1
,n+1 2n+2
∴Tn=
-3 2
-1 2n
=n+1 2n+1
-3 2
.n+3 2n+1