等差数列{a n } 的前n项的和为S n ,且S 5 =45,S 6 =60.(1)求{a n } 的通项公式;(2)若数列{b n }

2025-05-14 13:55:20
推荐回答(1个)
回答(1):

(1)a 6 =S 6 -S 5 =15,由 S 6 =
( a 1 + a 6 )×6
2
=60,
解得a 1 =5,又∵d=
a 6 - a 1
6-1
=2,
所以a n =2n+3.…4
(2)证明:∵b 2 -b 1 =a 1
b 3 -b 2 =a 2
b 4 -b 3 =a 3

b n -b n-1 =a n-1
叠加得 b n - b 1 =
( a 1 + a n-1 )(n-1)
2
=
(5+2n+1)(n-1)
2

所以 b n = n 2 +2n .…(9分)

1
b n
=
1
n 2 +2n
=
1
2
[
1
n
-
1
n+2
]

T n =
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(
3
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4
.…(12分)