x^4+81⼀4 (因式分解)

详细过程~!
2025-05-22 11:31:18
推荐回答(6个)
回答(1):

X^4+81/4
解:原式=(x^2)^2+(9/2)^2
=[(x^2)^2+(9/2)^2+9x^2]-9x^2
=(x^2+9/2)^2-(3x)^2
=(x^2+9/2-3x)(x^2+9/2+3x)

回答(2):

^---------代表什么?

回答(3):

x^4+81/4
=(x^2)^2+(9/2)^2
=[(x^2)^2+(9/2)^2+9x^2]-9x^2
=(x^2+9/2)^2-(3x)^2
=(x^2+9/2-3x)(x^2+9/2+3x)

回答(4):

考虑虚数吗?

回答(5):

X^4+81/4
=(x*x+9/2)^2-9x*x
=(x*x+3x+9/2)(x*x-3x+9/2)

回答(6):

X^4+81/4
原式=(x^2)^2+(9/2)^2
=[(x^2)^2+(9/2)^2+9x^2]-9x^2
=(x^2+9/2)^2-(3x)^2
=(x^2+9/2-3x)(x^2+9/2+3x)