求下列齐次线性方程组的基础解系,并写出其一般解 2x1+x2-3x3+2x4=0 3x1+2x2+x3-2x4=0 x1+x2+4x3-4x4=0

2025-01-13 20:19:15
推荐回答(1个)
回答(1):

2 1 -3 2
3 2 1 -2
1 1 4 -4
=====
1 1 4 -4
0 -1 -11 10
0 -1 -11 10
=====
1 1 4 -4
0 1 11 -10
0 0 0 0
==========
1 0 -7 6
0 1 11 -10
0 0 0 0
x1=7x3-6x4
x2=-11x3+10x4
取x3=1,x4=0,得
x1=7,x2=-11
ξ1=(7,-11,1,0)T
取x3=0,x4=1,得
x1=-6,x2=10
ξ2=(-6,10,0,1)T
所以
ξ1=(7,-11,1,0)T,ξ2=(-6,10,0,1)T为一个基础解系
通解为x=c1ξ1+c2ξ2.