微积分n次求导证明题目

证明对(x^(n-1)·e^(1/x))的n阶导数等于(-1)^n·x^(n+1)·e^(1/x)
2025-05-17 23:34:57
推荐回答(2个)
回答(1):

这个用数学归纳法很容易证明吧
n=1时,df/dx =-x^2e^(1/x)很容易得出
当n=k时成立,df^k/dx^k = (-1)^kx^(k+1)e^(1/x)
当n=k+1时,k+1阶导数等于对(-1)^kx^(k+1)e^(1/x)进行一次求导
d(-1)^kx^(k+1)e^(1/x)/dx = (-1)^(k+1)x^(k+1+1) e^(1/x)也就出来了

回答(2):

题目是错的,楼上的“证明”也是错的,一般来讲一个复杂的多项式是免不了的