∵AB=AC∴△ABC为等腰三角形∴∠B=∠C=90-x度∵∠CDE=1/2∠A∴设∠A=2x度,则∠B=∠C=(180-2x)/2度=90-x度在△CDE中∠C=90-x度,∠CDE=X度∠CED=180-(90-x)-x=90°∴DE⊥AC
过A做垂线与BC交于点F角BAF = 0.5角A = 角CDE角B = 角C所以 角CED = 角AFB = 90度
设CDE为X角A为2X所以角C为90-x所以和为90度