已知函数f(x)=2sin(12x?π6),x∈R(1)求f(4π3)的值;(2)设α,β∈[0,π2],且α<β,f(2α+2π)

2025-05-23 23:15:40
推荐回答(1个)
回答(1):

(1)f(

3
)=2------------------------------------(1分)
f(2α+2π)=2sin(α+
6
)=
5
13
f(2β+π)=2sin(β+
π
3
)=
6
5

α,β∈[0,
π
2
]
,得出
6
≤α+
6
3
,所以cos(α+
6
)=?
12
13

π
3
≤β+
π
3
6
,所以cos(β+
π
3
)=-±
4
5

因为α-β=(α+
6
)-(β+
π
3
)-
π
2

所以sin(α?β)=sin[(α+
6
)?(β+
π
3
)?
π
2
]
=?cos[(α+
6
)?(β+
π
3
)]
--------------------------------------------------(2分)
=?[cos(α+
6
)cos(β+
π
3
)+sin(α+
6
)sin(β+
π
3
)]
---------------(1分)
cos(β+
π
3
)=
4
5
时,sin(α?β)=
33
65
又因为?
π
2
≤α?β≤0

所以sin(α?β)=
33
65
(舍去)-------------------------------------(1分)
cos(β+
π
3
)=?
4
5
时,因为?
π
2
≤α?β≤0
,sin(α-β)<0
所以sin(α?β)=?
63
65
-----------------------------------------------------------------------------------(1分)
(另外可以这样限角   由0≤β≤
π
2
π
3
≤β+
π
3
6

又因为
1
2
<sin(β+
π
3
)=
3
5
2
2
[0,
π
2
]
β+
π
3
∈[
π
6
π
4
]

所以应该β+
π
3
∈[
π
2
6
]
所以cos(β+
π
3
)=?
4
5