(2012?溧水县二模)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:

2025-05-18 04:16:51
推荐回答(1个)
回答(1):

(1)证明:连接OA,
∵OA=OD,
∴∠1=∠2.
∵DA平分∠BDE,
∴∠2=∠3.
∴∠1=∠3.∴OA∥DE.
∴∠OAE=∠4,
∵AE⊥CD,∴∠4=90°.
∴∠OAE=90°,即OA⊥AE.
又∵点A在⊙O上,
∴AE是⊙O的切线.

(2)解:∵BD是⊙O的直径,
∴∠BAD=90°.
∵∠5=90°,∴∠BAD=∠5.
又∵∠2=∠3,∴△BAD∽△AED.

BD
AD
BA
AE

∵BA=4,AE=2,∴BD=2AD.
在Rt△BAD中,根据勾股定理,
得BD=
8
3
3

∴⊙O半径为
4
3
3