证明不等式:a+1⼀a-√(a눀+1⼀a눀)≤2-√(2)

2025-05-12 21:58:14
推荐回答(3个)
回答(1):

楼上的太麻烦,看我的
令a+1/a=A
y=(a+1/a)-√(a^2+1/a^2)=(a+1/a)-√[(a+1/a)^2-2]=A-√(A^2-2)=2/[A+√(A^2-2)] A>=2。
显然y在A>=2上的最大值当A=2时取得,y=2/(2+√2)=2-√2.

回答(2):

艰经

回答(3):

当a>0时,a+1/a-√(a²+1/a²)≤2-√(2),[a+1/a-(2-√2)]²=a²+1/a²+2-2(a+1/a)*(2-√2)+4-4√2+2
=a²+1/a²-2(a+1/a)*(2-√2)+4*(2-√2)=a²+1/a²-2*(2-√2)*[(a+1/a)-2],∵a>0时,a+1/a≥2,
∴a²+1/a²-2*(2-√2)*[(a+1/a)-2]≤a²+1/a²,即[a+1/a-(2-√2)]²≤a²+1/a²,整理得:a+1/a-(2-√2)≤√(a²+1/a²),则a+1/a-√(a²+1/a²)≤2-√(2)成立。