全等三角形的判定,讲细点,脑子有点笨,见谅 两角和它们的夹边对应相等的两个三角形全等,怎么理解?

2025-05-14 08:46:40
推荐回答(5个)
回答(1):

两角的夹边相等,则一边确定,两角再相等,则另两边与第三边的弧度确定,它们相交与一点,则有唯一一三角形,故两三角形全等。 两角相等,则两三角形相似,各边之比相等,又一角的对边相等,所以另外两边也相等,三边相等所以全等。其实两角及其夹边相等也可以用这种方法讲述。

回答(2):

恩。。就是如果有两个角等了,那么就是三个角等了,这样就是相似了,要全等的话只要边相等就可以了。

回答(3):

既然有两个角都相等了 那么说明第三个角也一定相等
即这两个三角形三个角都相等 那么他们肯定相似
相似三角形不同的地方在于他们的每条对应边长度不等,但是都对应成比例。
现在你又知道其中有一条边相等 也就是说明这个比例为1
所以其他两边之比也为1 即相等
所以这两个三角形全等

回答(4):

利用反证法证明。

证明:
假设两角及其中一角的对边对应相等的两个三角形不全等
因为两三角形有两个角相等,
所以这两个三角形相似。
因为这两个相似三角形不全等,
所以这两个三角形等大的角所对边均不相等
而这与原命题“其中一角的对边对应相等”矛盾
所以,假设不成立
综上,原命题成立。
证毕。

回答(5):

太麻烦了,直接可用角边角证全等
两角相等,则第三角相等,则知两角及其夹边相等,可用角边角证全等。
夹边就是两个角的共同边