已知{an}数列的前n项和Sn =-an-(1⼀2)^(n-1)+2(n为正整数)

2025-05-13 17:23:18
推荐回答(1个)
回答(1):

(1).Sn =-an-(1/2)^(n-1)+2
Sn -1=-an-1 -(1/2)^(n-2)+2
an=-an+an-1 -(1/2)^n-2
2an=an-1 +(1/2)^n-1
两边同乘2^n-1,
2^n* an=2^n-1 *an-1 +1
令bn=2^n*an,
bn=bn-1 +1
所以{bn}为等差数列。
s1=-a1 -1+2, a1=1/2,b1=1
所以an=n/(2^n)
(2)根据你的计算Tn=3-(n+3)/2^n,
作差:原式=[3-(n+3)/2^n] -[5n/(2n+1)]
=[3-(n+3)/2^n] -[3 - (n+3)/(2n+1)]
=(n+3)/(2n+1)-(n+3)/2^n
=(n+3)*{1/(2n+1) -1/2^n] < 0
所以Tn<5n/(2n+1)