a(2n-1)*a2n=(1/2)^(2n-1)
a2n*a(2n+1)=(1/2)^2n
a(2n+1)*a2(n+1)=(1/2)^(2n+1)
a2(n+1)/a2n=1/2
a(2n+1)/a(2n-1)=1/2
a1*a2=1/2 a1=1 a2=1/2
所以{a2n}是首项为1/2,公比为1/2的等比数列
{a(2n-1)}是首项为1,公比为1/2的等比数列
T2n=S{a2n}+S{a(2n-1)}=1-(1/2)^n+2(1-(1/2)^n)=3-3*(1/2)^n
a(n+1)=S(n+1)-Sn=4an+2-4a(n-1)-2=4an-4a(n-1)
S2=a1+a2=4a1+2 a1=1 a2=5
bn=a(n+1)-2an=2an-4a(n-1)
b(n-1)=an-2a(n-1)
bn=2b(n-1)
b1=a2-2a1=3
所以{bn}是首项为3,公比为2的等比数列