I=2∑∫∫[(y-z)(x-b)/b+(z-x)y/b+(x-y)z/b]DS
=2/b∑∫∫[xy-by-xz+bz+yz-xy+xz-yz]
=2/b∑∫∫[-by+bz]DS
=2∑∫∫(z-y)DS
DyDz=DS*cos A=DS*(x-b)/b
则DS=DyDz*b/(x-b)
DzDx=DS*cos B=DS*y/b
则DS=DxDz*b/y 所以yDs=bDxDz
DxDy=DS*cos c=DS*z/b
则DS=DxDy*b/z 所以zDS=bDxDy
代入则将原积分求解转换成,曲面在坐标系投影面积的求解
I=2b∑∫∫DxDy-2b∑∫∫DxDz
L围成曲面在xoy投影面积是,圆柱x^2+y^2=2ax在平面投影,面积πa^2
L围成曲面在xoz投影面积是0,参考上图
I=2b(Dxy)∫∫DxDy-0
=2bπa^2