(2012?西城区一模)如图所示,两物体A、B分别与一竖直放置的轻质弹簧的两端相连接,B物体在水平地面上,

2025-05-20 07:13:19
推荐回答(1个)
回答(1):

(1)因为点Pn(an+1,Sn)在函数f(x)=x+1的图象上,
所以Sn=an+1+1(n∈N*),因为S1=a1=a2+1,a2=a1-1,a1+a2=S2=a3+1,a3=2a1-2.
又数列{an}为等比数列,所以a22=a1a3,即(a1-1)2=a1(2a1-2),
故a1=-1,或a1=1(舍去).
(2)由(1)知数列{an}是以a1=-1为首项,q=2为公比的等比数列.
所以Sn

?1(1?2n)
1?2
=1-2n,1-Sn=2n
4b1?4b24bn4b1+b2+…+bn4n(1?Sn)bn=22n?2nbn22n+nbn
得2(b1+b2+…+bn)=2n+nbn对n∈N*成立.①
则2(b1+b2+…+bn+bn+1)=2(n+1)+(n+1)bn+1对n∈N*成立.②
②-①,得2bn+1=2+(n+1)bn+1-nbn,即(n-1)bn+1+2=nbn对n∈N*成立.③
则有nbn+2+2=(n+1)bn+1对n∈N*成立.④
④-③,得nbn+2-(n-1)bn+1=(n+1)bn+1-nbn,n(bn+2+bn)=2nbn+1
即bn+2+bn=2bn+1对n∈N*成立.由等差数列定义,知{bn}为等差数列.
当n=1时,由①式得2b1=2+b1,b1=2,则公差d=b2-b1=3,
所以bn=2+3(n-1)=3n-1(n∈N*).