高二数学导数的题

2025-05-19 16:36:55
推荐回答(1个)
回答(1):

解: 据题意,梁的强度y=kbh^2,b∈(0,d),k是正的常数.
现b^2+h^2=d^2,将h^2=d^2b^2代入得y=kb(d^2b^2).
现y'=kd^23kb^2.
令y'=0,解得(0,d)内的唯一驻点b0=根号3/3d,
且y'(b0)=6kb0<0,
b0是极大值点,也是最大值点.
因此,当断面底为根号3/3d ,高为根号6/3d 时,强度最大.