已知如图,在等腰梯形ABCD中,AD‖BC,AB=CD,AD=3,BC=9,tan∠ABC=4⼀3,直线MN是梯形的对称轴,点P是线

2025-05-23 11:54:29
推荐回答(1个)
回答(1):

解:(1)∵AD∥BC,AB=CD,
∴∠ABC=∠DCB,
∵直线MN是梯形的对称轴,
∴PB=PC.
∴∠PBC=∠PCB,
∴∠ABP=∠DCP,
∵AB∥CF
∴∠ABP=∠F
∴∠F=∠DCP.
∵∠EPC=∠FPC,
∴△PEC∽△PCF,
∴PC2=PE•PF;
(2)过点E作EG⊥BC于G.
∵,
∴.
由题意有EG∥MN,
∴,即,
∴;

(3)(Ⅰ)当∠PDC=∠DCF时,PD∥CF,
∴∠MDP=∠ABC,
即,
∴x=2.
(Ⅱ)当∠PDC=∠FEC=∠DEP时,过点P作PH⊥DE交AD的延长线于点O.
则.
∴∠ODC=∠DCB,
∴DO==,
又,即

因为2都在定义域内,所以当x=2时,△EFC和△PDC相似.