(1)证明:如图,连接OD.
∵AC⊥AB,
∴∠BAC=90°,即∠OAE=90°.
在△AOE与△DOE中,
,
OA=OD AE=DE OE=OE
∴△AOE≌△DOE(SSS),
∴∠OAE=∠ODE=90°,即OD⊥ED.
又∵OD是⊙O的半径,
∴ED是⊙O的切线;
(2)解:如图,在△OAE中,∠OAE=90°,OA=3,AE=4,
∴由勾股定理易求OE=5.
∵AB是直径,
∴∠ADB=90°,即AD⊥BC.
又∵由(1)知,△AOE≌△DOE,
∴∠AEO=∠DEO,
又∵AE=DE,
∴OE⊥AD,
∴OE∥BC,
∴
=OA AB
=OE BC
.1 2
BC=2OE=10,即BC的长度是10.