如图,在Rt△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上.(1)如图1,如果AM=AN,求证:BM=CN;(2)如

2025-05-17 17:31:07
推荐回答(1个)
回答(1):

(1)证明:∵AB=AC,∴∠B=∠C.
∵AM=AN,∴∠AMN=∠ANM.
即得∠AMB=∠ANC.(1分)
在△ABM和△CAN中,

∠AMB=∠ANC
∠B=∠C
AB=AC

∴△ABM≌△CAN(AAS).(2分)
∴BM=CN.(1分)
另证:过点A作AD⊥BC,垂足为点D.
∵AB=AC,AD⊥BC,∴BD=CD.(1分)
同理,证得MD=ND.(1分)
∴BD-MD=CD-ND.
即得BM=CN.(2分)

(2)MN2=BM2+NC2成立.
证明:过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.(1分)
在△ABM和△ACE中,
AB=AC
∠B=∠ACE
BM=CE

∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.(2分)
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.(1分)
在△MAN和△EAN中,
AM=AE
∠MAN=∠EAN
AN=AN

∴△MAN≌△EAN(SAS).
∴MN=EN.(1分)
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2
即得MN2=BM2+NC2.(1分)
另证:由∠BAC=90°,AB=AC,可知,把△ABM绕点A逆时针旋转90°后,AB与AC重合,设点M的对应点是点E.
于是,由图形旋转的性质,得AM=AE,∠BAM=∠CAE.(3分)
以下证明同上.