一道定积分证明题

求大神帮忙,周一交作业,万分感谢!!!
2025-05-17 16:52:18
推荐回答(2个)
回答(1):

如下用到的不等式是积分形式的柯西不等式:


证明过程如下:

回答(2):

根据定义来做。
将区间〔a,b〕分为等长的n个子区间。设 xi为第i个区间的中点。

pi=f(xi)coskxi,
qi=f(xi)sinkxi,
ri=f(xi).
如果我们能证明下式,两边平方和内配上子区间长度,取极限,则结论成立.
(p1+..+pn)^2+(q1+...+qn)^2<=(r1+...+rn)^2

我们知道 pi^2+qi^2 = ri^2, ri >= 0
两边展开得:
左边为
pi^2 对i求和
2pipj 对i,j求和, i<j.
qi^2 对i求和
2qiqj 对i,j求和, i<j.

右边为
ri^2 对i求和
2rirj 对i,j求和, i<j.

显然:
pi^2 对i求和 + qi^2 对i求和 = ri^2 对i求和

对剩下的,我们只需证明: 任给 i<j
pipj+qiqj<= rirj
如果 ri或 rj为0,结论显然,否则,令
sinA= pi/ri,cosA=qi/ri,
sinB=pj/rj,cosB=qj/rj,
则所求证不等式为:
(sinAsinB+cosAcosB)rirj<=rirj
即cos(A-B)<=1 ,显然成立。于是原结论成立。