(1)n=1时,2S1=2a1=a12+a1,
a12-a1=0,解得a1=0(各项均为正数,舍去)或a1=1,
n≥2时,
2Sn=an2+an,
2Sn-1=an-12+an-1,
2Sn-2Sn-1=2an=an2+an-an-12-an-1
an2-an-12-an-an-1=0
(an+an-1)(an-an-1)-(an+an-1)=0
(an+an-1)(an-an-1-1)=0
∵数列各项均为正,∴an-an-1=1,
∴数列{an}是以1为首项,1为公差的等差数列.
∴an=1+n-1=n.
(2)∵数列{bn}满足b1=1,2bn-bn-1=0(n≥2,n∈N *),
∴{bn}是首项为1,公比为
的等比数列,1 2
∴bn=(
)n?1.1 2
∴cn=anbn=n?(
)n?1,1 2
∴Tn=1+2×
+3×(1 2
)2+…+n?(1 2
)n?1,①1 2
Tn=1 2
+2×(1 2
)2+3×(1 2
)3+…+n?(1 2
)n,②1 2
①-②,得:
Tn=1+1 2
+(1 2
)2+(1 2
)3+…+(1 2
)n?1?n?(1 2
)n1 2
=
-n?(1?(
)n
1 2 1?
1 2
)n1 2
=2-(n+2)?(
)n1 2
∴Tn=4?(2n+4)?(
)n.1 2