(1)∵a1=3,an=2Sn+1+3n(n∈N*,n≥2),
∴当n≥2时,an=Sn-Sn-1,∴Sn-3Sn-1=3n,
∴
-Sn 3n
=1,Sn?1 3n?1
∴数列{
}是以1为首项,1为公差的等差数列;Sn 3n
(2)由(1)得
=n,Sn 3n
∴Sn=n?3n,
∴n≥2时,an=(2n+1)?3n-1,
n=1时也成立,
∴an=(2n+1)?3n-1;
(3)bn=
=2n2?5n?3 an
,n?3 3n?1
∴bn+1-bn=
,?2n+7 2n
∴n=1,2,3时,bn+1>bn,n≥4时,bn+1<bn,
∴对任意n∈N*,都有bn≤
,1 27
∵对任意n∈N*,都有bn+
t<t2,即bn<t2-2 9
t成立,2 9
∴
<t2-1 27
t,2 9
解得t>
或t<-1 3
.1 9