设An=A+nBSn=A1+A2+……+An =(A+B)+(A+2B)+……+( A+nB) =nA+(B+2B……+nB) =nA+n(n+1)B/2S3=3A+3×(3+1)/2×B=3A+6BS6=6A+6×(6+1)/2×B=6A+21BS12=12A+12×(12+1)/2×B=12A+78BS3/S6=1/3(3A+6B)/(6A+21B)=1/3A=BS6/S12=(6A+21B)/( 12A+78B)=27A/90A=0.3