
解:(1)∵∠ACD和∠DBA对同弧,
∴∠ACD=∠DBA,
又∵∠ACD=∠DCB,
∴∠DCB=∠DBA,
∵∠CDB=∠BDE,
∴△DBC∽△DEB;
(2)①∵∠ACD=∠DCB,
∴AD=BD,
过D点作DH⊥BC,交CB的有延长线与H,
∵∠DBH=∠1+∠2,∠DAF=∠3+∠4,∠1=∠4,∠3=∠2,
∴∠DBH=∠DAF,
在△ADF与△BDH中
|
∠DHB=∠DFA |
∠DBH=∠DAF |
DB=DA |
|
|
,
∴△ADF≌△BDH(AAS),
∴DF=DH,AF=BH,
∵∠ADB=90°,AD=BD,
∴∠3=45°,
∴∠2=∠3=45°,
∵∠DHC=90°,
∴∠2=∠CDH,
∴DH=CH,
∴DF=DH=BC+BH,
∴DF=BC+AF;

②∵∠BAD=∠ABD=45°,△DFC是等腰直角三角形,
∴∠CDF=∠FCD=45°,
∴∠BAD=∠CDF=45°,
∵∠AED=∠DEG(公共角),
∴△AED∽△DEG,
∴DE2=GE?EA,
∴DE===4
∵EG=10,EA=16,
∴AG=6,
设GO=x,OD=OA=6+x,
∴OE=GE-OG=10-x,
在Rt△DOE中,DE2=OE2+OD2,
∴(4)2=(10-x)2+(6+x)2,
解得:x=6,
∴OD=OA=6+x=6+6=12.
∴⊙O的半径为12.