关于x的方程x2+ax+a+1=0的两根分别为tanαtanβ则tan(α+β)=

请问为什么我算出来两个答案-1和1
2025-05-18 13:58:23
推荐回答(2个)
回答(1):

tanα+tanβ=-a;

tanαtanβ=a+1;

tan(α+β)
=(tanα+tanβ)/(1-tanαtanβ)
=(-a)/[1-(a+1)]
=-a/(-a)
=1

回答(2):

tanα+tanβ=-a
tanαtanβ=a+1
则tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)=1