(1)
已知
cos(α-β/2)=-(2√7)/7 (π/4<α-β/2<π) 则sin(α-β/2)=√21/7
sin(α/2-β)=1/2 (-π/4<α-β/2<π/4) 则cos(α/2-β)=√3/2
cos[(α+β)/2]
=cos[(α-β/2)-(α/2-β)]
=cos(α-β/2)cos(α/2-β)+sin(α-β/2)sin(α/2-β)
=[-(2√7)/7](√3/2)+(√21/7) *(1/2)
=(-2√21)/14+√21/14
=-√21/14
(2)
cos(α+β)=2*{cos[(α+β)/2]}²-1
=2*21/196-1
=-11/14
因为
cos(α+β)<0 又π/2<α+β<3π/2
所以π/2<α+β<π
sina(α+β)>0
sin(α+β)=5√3/14
tan(α+β)=sin(α+β)/cos(α+β)=-5√3/11