如图,在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=23,M,N分别为AB,SB的中

2025-05-13 16:52:03
推荐回答(1个)
回答(1):

解:(I)取AC 中点D,连接SD,DB.
因为SA=SC,AB=BC,所以AC⊥SD且AC⊥BD,所以AC⊥平面SDB.
又SB?平面SDB,所以AC⊥SB.
所以异面直线AC与SB所成角为90°.…(4分)
(II)因为AC⊥平面SDB,AC?平面ABC,所以平面SDC⊥平面ABC.
过N作NE⊥BD于E,则NE⊥平面ABC,
过E作EF⊥CM于F,连接NF,则NF⊥CM,
所以∠NFE为二面角N-CM-B的平面角.
因为平面SAC⊥平面ABC,SD⊥AC,所以SD⊥平面ABC.
又因为NE⊥平面ABC,所以NE∥SD.
由于SN=NB,所以NE=

1
2
SD=
1
2
SA2?AD2
=
2
,且ED=EB.
在正△ABC中,由平面几何知识可求得EF=
1
4
MB=
1
2

在Rt△NEF中,tan∠NFE=
EN
EF
=2
2

所以二面角N-CM-B的大小是arctan2
2
.     …(8分)
(III)在Rt△NEF中,NF=
EF2+EN2
=
3
2

所以S△CMN=
1
2
CM?NF=
3
2