解:(1)OE=OF.理由如下:
在正方形ABCD中,
∴AO=BO,∠AOF=∠BOE=90°,
∴∠OBE+∠BEO=90°,
∵AH⊥EB,
∴∠AHE=90°,
∴∠HAE+∠AEH=90°,
∴∠OBE=∠OAF,
在△AOF和△BOE中,
,
∠AOF=∠BOE AO=BO ∠OAF=∠OBE
∴△AOF≌△BOE(ASA),
∴OE=OF.
(2)OE=OF仍然成立.
理由:如图,在正方形ABCD中,∴AO=BO,∠AOF=∠BOE=90°,
∴∠FAO+∠F=90°,
∵AH⊥EB,∴∠AHE=90°,
∴∠HAE+∠E=90°,
∴∠E=∠F,
在△AOF和△BOE中,
,
∠AOF=∠BOE ∠E=∠F AO=BO
∴△AOF≌△BOE(AAS),
∴OE=OF.
所以结论仍然成立.