设常数a,b,c满足1/(1-u)(1+u)^2=a/(1-u)+(bu+c)/(1+u)^2则有a(1+u)^2+(bu+c)(1-u)=1a+2au+au^2+bu+c-bu^2-cu=1(a-b)u^2+(2a+b-c)u+a+c=1所以a-b=0,2a+b-c=0,a+c=1所以a=b=1/4,c=3/4所以1/(1-u)(1+u)^2=(1/4)/(1-u)+(u/4+3/4)/(1+u)^2=1/4[1/(1-u)+(3+u)/(1+u)^2]