(1)解:当n=1时,a1=S1=2a1-1,
解得a1=1,
当n≥2时,an=Sn-Sn-1
=(2an-1)-(2an-1-1)=2an-2an-1,
∴
=2,an an-1
∴数列{an}是以a1=1为首项,2为公比的等比数列,
∴an=2n-1,
设{bn}的公差为d,
b1=a1=1,b4 =1+3d=7,解得d=2,
∴bn=1+(n-1)×2=2n-1.
(2)证明:∵bn=2n-1,
∴cn=
=1
bnbn+1
1 (2n-1)(2n+1)
=
(1 2
-1 2n-1
),1 2n+1
∴Tn=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)1 2n+1
=
(1-1 2
).1 2n+1
∴Tn=
(1-1 2
)<1 2n+1
.1 2