已知数列{an}的前n项和Sn满足Sn=2an-1,等差数列{bn}满足b1=a1,b4=7.(1)求数列{an}、{bn}的通项公式

2025-05-23 23:20:22
推荐回答(1个)
回答(1):

(1)解:当n=1时,a1=S1=2a1-1,
解得a1=1,
当n≥2时,an=Sn-Sn-1
=(2an-1)-(2an-1-1)=2an-2an-1

an
an-1
=2,
∴数列{an}是以a1=1为首项,2为公比的等比数列,
an=2n-1
设{bn}的公差为d,
b1=a1=1,b4 =1+3d=7,解得d=2,
∴bn=1+(n-1)×2=2n-1.
(2)证明:∵bn=2n-1,
cn=
1
bnbn+1
=
1
(2n-1)(2n+1)

=
1
2
1
2n-1
-
1
2n+1
),
Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
).
Tn=
1
2
(1-
1
2n+1
)<
1
2