(1)∵正方形ABCD的边长是4,BE=x,DF=2BE, ∴AE=AB-BE=4-x,AF=AD+DF=4+2x, ∴y=(4-x)(4+2x)=-2x 2 +4x+16, ∵E不与A、B重合, ∴0<x<4, 故y=-2x 2 +4x+16(0<x<4); (2)y=-2x 2 +4x+16=-2(x 2 -2x+1)+2+16=-2(x-1) 2 +18, ∴y=-2(x-1) 2 +18, ∵a=-2<0, ∴x=1时,y有最大值,最大值为18; (3)令y=0,则-2x 2 +4x+16=0, 整理得,2x 2 -4x-16=0, 解得x 1 =-2,x 2 =4, ∴抛物线与x轴交点坐标为(-2,0),(4,0). |