解:①在△ACE和△DCB中,
AC=CD,CE=BC,∠ACE=∠ECB,
∴△ACE≌△DCB,
∴∠MAC=∠NDC,AE=BD;
②∵△DAC和△EBC均为等边三角形,
∴∠DCE=60°,
∴△ACM≌△DCN,
∴CM=CN;
③∵∠MAC=∠NDC,∠DMO=∠AMC,
∴∠ACM=∠AOD=60°,
∴∠AOB=180°-60°=120°;
④∵∠MON=120°,又因为△BCN∽△E0N,
∴
=ON NC
,∵∠ONC=∠BNE,NE NB
∴△ONC∽△ENB,
∴∠CON=∠CEB=60°,∠MOC=60°,
∴OC平分∠AOB.
故选D.