解:(1)如答图1,连接OG.
∵EG为切线,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)AC∥EF,理由为:
连接GD,如答图2所示.
∵KG2=KD?GE,即
=KG KD
,GE KG
∴
=KG GE
,又∠KGE=∠GKE,KD KG
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)连接OG,OC,如答图3所示.
sinE=sin∠ACH=
,设AH=3t,则AC=5t,CH=4t,3 5
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2
)2,解得t=
3
.
30
5
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r-3t)2+(4t)2=r2,解得r=
t=25 6
.5
30
6
∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=
,tan∠OFG=tan∠CAH=5
30
6
=CH AH
,4 3
∴FG=
=
OG tan∠OFG