如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B在y轴的负半轴上,且OA=OB=5.点C是第一象限内一

2025-05-20 04:21:42
推荐回答(1个)
回答(1):

解答:(1)证明:∵BD⊥AC,
∴∠BDF=90°,
∴∠OBM+∠OFA=90°,
∵∠AOF=90°,
∴∠OAF+∠OFA=90°,
∴∠OAF=∠OBM,
在△OAF和△OBM中,

∠OAF=∠OBM
OA=OB
∠FOA=∠MOB=90°

∴△OAF≌△OBM,
∴OF=OM,∠OFA=∠OMB,
∵OC⊥OE,
∴∠EOC=90°,
∴∠AOF∠AOC=∠EOC-∠AOC,
∴∠FOC=∠MOE,
在△OFC和△OME中,
∠OFC=∠OME
OF=OM
∠FOC=∠MOE

∴△OFC≌△OME,
∴OC=OE,
∴不论点C怎样变化,点O总是在线段CE的垂直平分线上;
(2)解:设直线AC的解析式为:y=ax+b,把A,C坐标代入可求出a=-
4
3
,b=
20
3

∴直线线AC的解析式为y=-
4
3
x+
20
3

令x=0,可求得y=
20
3

∴OM=OF=
20
3

∴点M的坐标为(
20
3
,0)
设直线BD的解析式为y=kx+b,把M(
20
3
,0)和B(0,-5)的坐标代入得:
0=
20
3
k+b
b=-5

解得:
k=
3
4
b=-5

∴直线BD的解析式为y=
3
4
x-5.