设y=|x-1|+|x+2|,当-2≤x≤1时,y=-(x-1)+(x+2)=3当x>1时,y=(x-1)+(x+2)=2x+1>3当x<-2时,y=-(x-1)-(x+2)=-2x-1>3故y=|x-1|+|x+2|有最小值3.不等式|x+2|+|x-1|≥a恒成立即a必小于等于y=|x-1|+|x+2|的最小值3.故取值范围为(-∞,3].故答案为(-∞,3].