(1)设k1轻弹簧的形变量为x,则由题意两弹簧的总长等于两弹簧的原长之和,则知k1的伸长量与k2的压缩量相等,
由m1重物平衡得:k1x+k2x=m1gsinθ,解得:x=
m1gsinθ
k1+k2
(2)k1原来的伸长量为x0=
(m1+m2)gsinθ k1
则由几何关系得,m1上移的距离为:S=x0-x=
-(m1+m2)gsinθ k1
m1gsinθ
k1+k2
(3)对m2重物平衡可知:F=m2gsinθ+k2x=m2gsinθ+
k2m1gsinθ
k1+k2
答:
(1)k1轻弹簧的形变量是
.
m1gsinθ
k1+k2
(2)m1上移的距离是
-(m1+m2)gsinθ k1
.
m1gsinθ
k1+k2
(3)推力F的大小是m2gsinθ+
.
k2m1gsinθ
k1+k2