一道初中数学题要过程

2025-05-21 17:18:35
推荐回答(2个)
回答(1):

取AB的中点F,连接CF。

已知,△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,
可得:△ACB和△ECD都是等腰直角三角形;
所以,AF = BF = CF ,DE² = 2CD² 。

AD²+DB² = (AF-DF)²+(BF+DF)² = (CF-DF)²+(CF+DF)²
= 2(CF²+DF²) = 2CD² = DE² 。

回答(2):

∵,△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,
∴∠B=∠BAC=45°,∠CED=CDE=45°,CE=CB AC=BC
∵∠ECA+∠ACD=90°,∠ACD+∠BCD=90°
∴∠ECA=∠BCD
可证得△ACE≌△BCD
∴∠B=∠CAE=45°,BD=AE
∴∠EAB=90°
∴△ADE为直角三角形
∴AD²+AE²=DE²
又∵BD=AE
∴AD²+DB²=DE²