插值法又称“内插法”,是利用函数f(x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。例如:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。根本不必记忆教材中的公式,也没有任何规定必须β1>β2验证如下:根据:(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:(A1-A)=(B1-B)/(B1-B2)×(A1-A2)A=A1-(B1-B)/(B1-B2)×(A1-A2)=A1+(B1-B)/(B1-B2)×(A2-A1)59×(1+r)^-1+59×(1+r)^-2+59×(1+r)^-3+59×(1+r)^-4+(59+1250)×(1+r)^-5=1000(元)这个计算式可以转变为59×(P/A,r,5)+1250×(P/F,r,5)=1000当r=9%时,59×3.8897+1250×0.6499=229.4923+812.375=1041.8673>1000元当r=12%时,59×3.6048+1250×0.5674=212.6832+709.25=921.9332<1000元因此,现值利率1041.86739%1000r921.933212%(1041.8673-1000)/(1041.8673-921.9332)=(9%-r)/(9%-12%)解之得,r=10%。
就是你估计一下你的利率大概会在哪个区间,找到一个比他大还有比他小的,例如2%对应的销售额是88,7%对应的是100,求99对应的利率,那么设x(2%-x)/(7%-x)=(88-99)/(100-99)