(Ⅰ)∵4a2cosB-2accosB=a2+b2-c2,
∴4a2cosB-2accosB=2abcosC,即2acosB-ccosB=bcosC,
利用正弦定理化简得:2sinAcosB-sinCcosB=sinBcosC,
即2sinAcosB=sin(B+C)=sinA,
∴cosB=
,1 2
则B=
;π 3
(Ⅱ)f(A)=2sin2(A+
)-cos(2A+π 4
)π 6
=1-cos(2A+
)-cos(2A+π 2
)π 6
=1+sin2A-
cos2A+
3
2
sin2A1 2
=1+
sin2A-3 2
cos2A
3
2
=1+
sin(2A-
3
),π 6
在△ABC中,B=
,π 3
∴0<A<
,∴-2π 3
<2A-π 6
<π 6
,7π 6
当2A-
=π 6
,即A=π 2
时,f(A)取最大值f(
π 3