如图,直三棱柱ABC-A1B1C1中,已知AC=BC=AA1=a,∠ACB=90°,D是A1B1中点.(1)求证:C1D⊥平面A1B1BA;

2025-05-17 18:34:40
推荐回答(1个)
回答(1):

(1)∵AC=BC,
∴△ABC为等腰三角形,
又∵A1D=DB1
∴C1D⊥A1B1
∵C1D⊥A1A,AA1∩A1B1=A1
∴C1D⊥平面A1B1BA
(2)由(1)可得:C1D⊥AB1
 又要使AB1⊥平面C1DF,只要DF⊥AB1即可,
又∵∠ACB=∠A1C1B1=90°,且AC=BC=AA1=a,
∴A1B1=

2
a,
∵△AA1B1∽△DB1F,
AA1
DB1
A1B1
B1F

∴B1F=a
即当:F点与B点重合时,会使AB1⊥平面C1DF.