黑洞和中子星的形成是因为质量还是因为密度,如果只按照质量算的话,宇宙那么重早就应该收缩坍塌了啊。。

2025-05-22 12:47:29
推荐回答(1个)
回答(1):

黑洞就是中心的一个密度无限大、时空曲率无限高、体积无限小的奇点和周围一部分空空如也的天区,这个天区范围之内不可见。依据阿尔伯特-爱因斯坦的相对论,当一颗垂死恒星崩溃,它将聚集成一点,这里将成为黑洞,吞噬邻近宇宙区域的所有光线和任何物质。
黑洞的产生过程类似于中子星的产生过程:某一个恒星在准备灭亡,核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高质量而产生的力量,使得任何靠近它的物体都会被它吸进去。黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——γ射线。
也可以简单理解:通常恒星最初只含氢元素,恒星内部的氢原子核时刻相互碰撞,发生聚变。由于恒星质量很大,聚变产生的能量与

恒星万有引力抗衡,以维持恒星结构的稳定。由于氢原子核的聚变产生新的元素——氦元素,接着,氦原子也参与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成,直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定,参与聚变时不释放能量,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是因为它的密度无穷大,从而产生的引力使得它周围的光都无法逃逸。跟中子星一样,黑洞也是由质量大于太阳质量好几倍以上的恒星演化而来的。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积接近无限小、密度几乎无限大的星体。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”就诞生了。
吸积
黑洞拉伸,撕裂并吞噬恒星
黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。已观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。
通常天体物理学家会用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。黑洞除了吸积物质之外,还通过霍金蒸发过程向外辐射粒子

中子星,是恒星演化到末期,经由引力坍缩发生超新星爆炸之后,可能成为的少数终点之一。恒星在核心的氢、氦、碳等元素于核聚变反应中耗尽,当它们最终转变成铁元素时便无法从核聚变中获得能量。失去热辐射压力支撑的外围物质受重力牵引会急速向核心坠落,有可能导致外壳的动能转化为热能向外爆发产生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星以至黑洞。白矮星被压缩成中子星的过程中恒星遭受剧烈的压缩使其组成物质中的电子并入质子转化成中子,直径大约只有十余公里,但上头一立方厘米的物质便可重达十亿吨,且旋转速度极快,而由于其磁轴和自转轴并不重合,磁场旋转时所产生的无线电波等各种辐射可能会以一明一灭的方式传到地球,有如人眨眼,故又称作脉冲星。
一颗典型的中子星质量介于太阳质量的1.35到2.1倍,半径则在10至20公里之间(质量越大半径收缩得越小),也就是太阳半径的30,000至70,000分之一。因此,中子星的密度在每立方厘米

克至

克间,此密度大约是原子核的密度。 致密恒星的质量低于1.44倍太阳质量,则可能是白矮星,但质量大于奥本海默-沃尔可夫极限(3.2倍太阳质量)的恒星会继续发生引力坍缩,则无可避免的将产生黑洞。
由于中子星保留了母恒星大部分的角动量,但半径只是母恒星极微小的量,转动惯量的减少导致了转速迅速的增加,产生非常高的自转速率,周期从毫秒脉冲星的700分之一秒到30秒都有。中子星的高密度也使它有强大的表面重力,强度是地球的



倍。逃逸速度是将物体由重力场移动至无穷远的距离所需要的速度,是测量重力的一项指标。一颗中子星的逃逸速度大约在10,000至150,000公里/秒之间,也就是可以达到光速的一半。换言之,物体落至中子星表面的最大速度将达到150,000公里/秒。更具体的说明,如果一个普通体重(70公斤)的人遇到了中子星,他撞击到中子星表面的能量将相当于二亿吨核爆的威力(四倍于全球最巨大的核弹大沙皇的威力),当然这仅仅是假设,真要是这样的话,这个人在越来越接近中子星的时候,会被强大的潮汐力扯碎。

宇宙的不断膨胀
一般认为,宇宙产生于140亿年前一次大爆炸中。大爆炸后30亿年,最初的物质涟漪出现。大爆炸后20亿~30亿年,类星体逐渐形成。大爆炸后90亿年,太阳诞生。38亿年前地球上的生命
麦哲伦星云&
开始逐渐演化。
大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。原本人们想象宇宙会因引力而不再膨胀,但是,科学家已发现宇宙中有一种 “暗能量”会产生一种斥力而加速宇宙的膨胀。
大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近。引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小。
理论上存在某种临界密度。如果宇宙中物质的平均密度小于临界密度,宇宙就会一直膨胀下去,称为“开宇宙”;要是物质的平均密度大于临界密度,膨胀过程迟早会停下来,并随之出现收缩,称为“闭宇宙”。
问题似乎变得很简单,但实则不然。理论计算得出的临界密度为5×8^-30克/立方厘米。但要测定宇宙中物质平均密度就不那么容易了。星系间存在广袤的星系间空间,平均密度就只有2×10^-31克/立方厘米,远远低于上述临界密度。
然而,种种证据表明,宇宙中还存在着尚未观测到的所谓的暗物质,其数量可能远超过可见物质,这给平均密度的测定带来了很大的不确定因素。因此,宇宙的平均密度是否真的小于临界密度仍是一个有争议的问题。不过,就目前来看,开宇宙的可能性大一些,因为宇宙中还有更多的暗能量。
恒星演化到晚期,会把一部分物质(气体)抛入星际
NGC 5139 半人马座Ω
空间,而这些气体又可用来形成下一代恒星。这一过程中气体可能越来越少(并未确定这种过程会减少这种气体。)。以致于不能再产生新的恒星。10^14年后,所有恒星都会失去光辉,宇宙也就变暗。同时,恒星还会因相互作用不断从星系逸出,星系则因损失能量而收缩,结果使中心部分生成黑洞,并通过吞食经过其附近的恒星而长大。(根据质能守恒定律,形成恒星的气体并不会减少而是转换成其他形态。所以新的恒星可能会一直产生.)
10^17~10^18年后,对于一个星系来说只剩下黑洞和一些零星分布的死亡了的恒星,这时,组成恒星的质子不再稳定。10^32年后,质子开始衰变为光子和各种轻子。10^71年后,这个衰变过程进行完毕,宇宙中只剩下光子、轻子和一些巨大的黑洞。
10^108年后,通过蒸发作用,有能量的粒子会从巨大的黑洞中逃逸出。宇宙将归于一片黑暗。这也许就是开宇宙“末日”到来时的景象,但它仍然在不断地、缓慢地膨胀着。(但质子是否会衰变还未得到结论,因此根据质能守恒定律。宇宙中的质能会不停的转换。)
闭宇宙的结局又会怎样呢?闭宇宙中,膨胀过程结束时间的早晚取决于宇宙平均密度的大小。如果假设平均密度是临界密度的2倍,那么根据一种简单的理论模型,经过400~500亿年后,引力开始占上风,膨胀即告停止,而接下来宇宙便开始收缩。
以后的情况差不多就像一部宇宙影片放映结束后再倒放一样,大爆炸后宇宙中所发生的一切重大变化将会反演。收缩几百亿年后,原来星系远离地球的退行运动将代之以向地球接近的运动。再过几十亿年,宇宙背景辐射会上升到400开,并继续上升,于是,宇宙变得非常炽热而又稠密。 在坍缩过程中,星系会彼此并合,恒星间碰撞频繁。
这些结局只考虑到引力作用。实际上可能有更多其他的复杂因素。
2002年,据中国网[3] 报道,美国普林斯顿大学的保罗·斯坦哈特教授与英国剑桥大学的尼尔·图罗克教授,发表了关于“宇宙无始无终”的新论断。他们认为,宇宙既没有“诞生”之日,也没有终结之时,而就是在一次又一次的大爆炸中进行运动,循环往复,以至无穷的。 至于“宇宙无始无终”的新论是否正确,报导中认为,过几年国际天文学界可望对此做出验证。但直到2013年,循环宇宙的观点仍存在争议。
加速膨胀
一个科学家小组使用美国宇航局斯皮策空间望远镜进行的最新测量显示,宇宙的膨胀速度约为46英里(74公里)每秒·每百万秒差距(更精确的数值为:74.3 ± 2.1 (km/s)/Mpc)。
浩瀚宇宙为天文学家的观测和研究提供了无限可能。谁能想象,璀璨星空正在不断远离我们,终有一天会在我们眼中消失?然而,诺贝尔奖获得者布莱恩·施密特指出,这就是正在发生的事实——物质与物质之间的空间正在加大。“这意味者大概百亿年后的未来,绚烂的星空用肉眼再难观测到,黑夜将一片空寂,大概1000亿年之后,除了我们所在的银河系,所有星系都将相距遥远各自飘离,人们看到的宇宙将空无一物。”
美国科学家日前表示,基于相关发现中所获数据的计算产生了一个坏消息,即宇宙可能会在数百亿年后面临一场灾难。“如果你利用我们现在知道的所有物理学(知识)直接计算,这是个坏消息,”美国费米国家加速器实验室理论物理学家约瑟夫·利肯日前在美国科学促进会2013年年会上对媒体表示。美国科学促进会成立于1848年,是世界最大的科学协会之一,《科学》杂志也由其出版。利肯说,我们生活的宇宙并不稳定,科学界一直希望推算宇宙的长期稳定性,但这需要获得希格斯玻色子和其他亚原子粒子的精确质量,最近的发现提供了相关数据,在此基础上进行的计算显示数百亿年后将有一场灾难——“一个被认为会成为‘替代宇宙’的小空泡将在某处出现,随后逐渐膨胀并最终将我们破坏”。他认为,小空泡将以光速膨胀。