因为1/2* ln|x^2-1|+ln|x-1|-ln|x+1|
=ln|(x+1)(x-1)|^(1/2)+ln|x-1|/|x+1|
=ln[ |(x+1)(x-1)|^(1/2) ]*[ |x-1|/|x+1| ]
=ln{ [ |x-1|^(1/2+1)]/|x+1|^(1/2) }
=ln{|x-1|^(3/2)/|x+1|^(1/2) }
=3/2ln|x-1|-1/2 ln|x+1|
所以答案没错.
解析:
ln|x²-1|
=ln[|x+1|*|x-1|]
=ln|x+1|+ln|x-1|