已知正实数x,y满足2x+y=2,则(2/x+1)+1/y的最小值是?

求值!!!要详细过程!
2025-05-20 10:33:46
推荐回答(1个)
回答(1):

2x=1-y>0 00 00 1/(2/x+1/y) =1/[2/x+1/(1-2x)] =(-2x+x)/(-3x+2) =(-2x+4x/3-x/3+2/9-2/9)/(-3x+2) =2x/3+(1/9)-(2/9)/(-3x+2) =(-2/9)[(-3x+2)+1/(-3x+2)]+5/9 由均值不等式,得 当-3x+2=1/(-3x+2)时,即x=1/3时,1/(2/x+1/y)有最大值(-2/9)(1+1)+5/9=1/9 即当x=1/3时,2/x+1/y有最小值9。