(1)f(x)=cos(2x-
)+2sin2x=π 3
cos 2x+1 2
sin 2x+1-cos 2x=
3
2
sin 2x-
3
2
cos 2x+1=sin(2x-1 2
)+1.π 6
则f(x)的最小正周期为T=
=π.2π 2
由2x-
=kπ+π 6
,得对称轴方程为x=π 2
+kπ 2
,k∈Z.π 3
(2)当x∈[0,
]时,-π 2
≤2x-π 6
≤π 6
,5π 6
则当2x-
=π 6
,即x=π 2
时,f(x)max=2;π 3
当2x-
=-π 6
,即x=0时,f(x)min=π 6
.1 2