(1)∵an=2n-1,∴bn=a2n-1=2(2n-1)-1=4n-3,∴{bn}的通项公式为bn=4n-3(2)由(1)知bn=4n-3,b1=4×1-3=1∴bn+1-bn=4(n+1)-3-(4n-3)=4∴数列{bn}为等差数列,且首项为1,公差为4,∴其前n项和Sn= n(1+4n?3) 2 =2n2-n