(1)由an+1=3an+3n+1-2n(n∈N*)
可得
?an+1 3n+1
=1?an 3n
(1 3
)n(2分)2 3
令
=bn,则bn+1?bn=1?an 3n
(1 3
)n(3分)2 3
∴当n≥2时,bn-bn-1+bn-1-bn-2+…+b3-b2+b2-b1=(n?1)?
[(1 3
)+(2 3
)2++(2 3
)n?1](5分)2 3
=(n?1)?
[1?(2 3
)n?1]2 3
∴bn=b1+(n?1)?
[1?(2 3
)n?1]bn=(n?1)+(2 3
)n(6分)2 3
∴an=3nbn=2n+(n-1)3n(7分)
(2)令Tn=32+2?33+3?34+…+(n-2)3n-1+(n-1)3n,①(8分)
3Tn=33+2?34+3?35+…+(n-2)3n+(n-1)3n+1②(9分)
①式减去②式得:?2Tn=32+33+…+3n?(n?1)3n+1=
?(n?1)?3n+1,(10分)
3n+1?32
2
∴Tn=
?(n?1)3n+1
2
=
3n+1?32
4
.(12分)(2n?3)?3n+1+9 4
∴数列{an}的前n项和