(Ⅰ)已知数列{an}满足Sn=
(an2+n-1).1 2
所以:2Sn=an2+n?1①
利用递推关系:2Sn?1=an?12+n (n≥2)②
①-②得:2an=an2?an?12+1
(an?1)2?an?12=0
an+1>an>0
所以:an-an-1=1(n≥2)
当n=1时:S1=
a121 2
解得:a1=2
所以:an=n+1③
当n=1时,a1=2适合③
故:an=n+1
(Ⅱ)由(Ⅰ)得:an+1=n+2
已知:bn=
+an an+1
=an+1 an
+n+1 n+2
=2+n+2 n+1
?1 n+1
1 n+2
Tn=b1+b2+…+bn=2+(
-1 2
)+2+(1 3
-1 3
)+…+2+(1 4
?1 n+1
)1 n+2
=2n+
-1 2
1 n+2
(Ⅲ)设cn=2n(
?λ),数列{cn}是单调递减数列an+1 n
所以:cn>cn+1
2n(
?λ)>2n+1(n+2 n
?λ)n+3 n+1
解得:λ>
n2+n?2
n2+n
所以:λ>(
)max
n2+n?2
n2+n
当n→+∞时,(
)max≈1
n2+n?2
n2+n
所以:λ>1