用洛必达法则求下列极限 limx趋向0 [(e^x-e^-x-2x)⼀(x-sinx)]

2024-11-08 14:12:16
推荐回答(2个)
回答(1):

回答(2):

limx->0 [(e^x-e^-x-2x)/(x-sinx)]
=limx->0 [(e^x+e^-x-2)/(1-cosx)]
=limx->0[(e^x-e^-x)/ sinx]
=limx->0 [(e^x+e^-x)/cosx]
=(1+1)/1
=2