如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,且平面PAD⊥底面ABCD(1)求证:AB⊥平

2025-05-13 21:33:15
推荐回答(1个)
回答(1):

(1)平面PAD⊥底面ABCD
又AB⊥AD由面面垂直的性质定理得,
AB⊥平面PAD----------------------------------(4分)
(2)取AD的中点为O,则PO⊥AD 
又平面PAD⊥底面ABCD,
则PO⊥底面ABCD连接CO,∠PCO为直线PC与底面ABCD所成的角,
在Rt△PCO中,CO=

1+(
1
2
)
2
=
5
2
,PO=
3
2

tan∠PCO=
PO
CO
=
15
5

∠PCO=arctan
15
5
.------------------------------(8分)
(3)取BC中点为E,连接OE,
因为PO⊥AD,AD⊥OE
∴AD⊥平面POE,
因为BC∥AD
所以,AD∥平面PBC,故点D到平面PBC的距离等于AD这一条线上任意一点到平面PBC的距离
∴BC⊥平面POE
所以:平面POE⊥平面PBC,
在Rt△POE中,作OF⊥PE于F,则OF⊥平面PBC
则OF的长即为点D到平面PBC的距离.
在RT△POE,PO=
3
2
,OE=1,PE=
PO2+OE2
=
7
2

1
2
?PO?OE=
1
2
?PE?OF?OF=
3
2
12+(
3
2
)
2
=
21
7

∴点D到平面PBC的距离为
21
7
---------------------------------------------(12分)