(1)依题意得:∠AOB=∠COE=90°,
∴=tan∠ABO=2,=tan∠OCE=3,
∴OA=2OB,OE=3OC.
∵OB:OC=1:3,
∴OC=3OB,
∴OE=9OB.
∵AE=7,
∴9OB-2OB=7,
∴OB=1,OC=3,OA=2,OE=9,
∴A(0,2),B(-1,0),C(3,0),E(0,9).
设抛物线的解析式为:y=a(x+1)(x-3),
∴2=-3a,即a=-,
∴抛物线解析式为:y=-x2+x+2;
(2)过点A作AD∥x轴交抛物线于点D.
∴yD=yA=2,
∴D(2,2).
设直线BD的解析式为y=kx+b,
∴,
解得:,
∴直线BD的解析式为y=x+;
(3)易知直线CE的解析式为y=-3x+9,Q(2,3).
当直线PQ与坐标轴相交所成的锐角等于梯形ABCD的底角时,分两种情况:
①如图1,设直线PQ与y轴交于点F,∠QFE=∠ABC.过点Q作QM⊥y轴于点M,则∠QME=∠AOB=90°.
∵∠QFM=∠ABO,
∴tan∠QFM=tan∠ABO=2,
∴=2,
∵Q(2,3),
∴MF=QM=1,MO=3,
∴F(0,2)与A点重合,即P1(0,2).
经验证,P1(0,2)在抛物线y=-x2+x+2上.
易求得,直线FQ的解析式为y=x+2,
由,解得,,
∴点P2的坐标为(,);
②如图2,过点Q作AB的平行线PQ,交x轴于点G,∠QGC=∠ABC.
易求直线AB的解析式为y=2x+2,则直线GQ的解析式为y=2x-1.
由,解得